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Abstract--In array processors it 1is
important to map problem modules onto processors
such that modules that communicate with each
other lie, as far as possible, on adjacent
processors. This mapping problem is formulated
in graph theoretic terms and shown to be
equivalent, in its most general form, to the
graph isomorphism problem. The problem is also
very similar to the bandwidth reduction problem
for sparse matrices and to the quadratic
assignment problenm.

It appears unlikely that an efficient exact
algorithm for the general mapping problem will
ever be found. Research in this area must
concentrate on efficient heuristics that find
good solutions in most cases. A heuristic
algorithm that proceeds by sequences of pairwise
interchanges alternating with probabilistic jumps
is described. This algorithm has been used to
solve practical mapping problems on a specific
array processor (the Finite Element Machine) with
good results. Results for a set of practical
problems are tabulated, several of which are
illustrated.

I, Introduction

) Most arrays of processors are incompletely
connected, that is, a direct link does not
connect each pair of processors. The reasons for
this include (1) the fact that the total aumker
of links in completely connected systems
increases as the square of the number of
processors——a growth rate that is unacceptable in
most cases, and (2) the number of input/ocutput
ports on each individual processor increases
linearly with the number of processors--this is
usually not possible because the number of I/0
ports is generally fixed at some constant value.
Suppose a problem made up of several modules
that execute in parallel is to be solved on an
incompletely connected array. When assigning
modules to processors, pairs of modules that
communicate with each other should be placed, as
far as possible, on processors that are directly
connected. We call the assigmment of modules to
processors a mapping and the problem of
maximizing the number of pairs of communicating
modules that fall on pairs of directly counnected

processors the Mapping Problem.

This research was supported by NASA Contracts
NAS1-14101 and NAS1-14472 while the author was
resident at ICASE.

In this paper we first show that the problem
of finding the best mapping 1s, in general, very
difficult. We then describe a heuristic
algorithm that has been developed to solve this
problem for a specific array processor. We start
by givicg a mathematical formulation of the
problem io Sectiom II. Im Section III we show
that in its most general form, the mapping
problem is equivalent to the graph isomorphism
problem, one of the classical unsolved
coxbinatorial problems. We point out the
similarities between the mapping problem and the
bardwidth reduction and quadratic assigoment
preblems. Exact solutions for neither of these
proolems exist and they are solved approximately
ugsing heuristic algorithms.

In Section IV we describe how the mapping
preblem arises when solving structural problems
on the Finite Element Machine (FEM), an array of
processors currently under development at NASA
Langley Research Center. In Section V we
describe a simple heuristic algorithm that has
becn implemented and used to find mappings for
the finite element machine with very encouraging
resalts. Results for a number of test cases are
tabulated, several of which are illustrated.

II., Mathematical Formulation
Let the graph of the problem to be mapped
ontc the array be denoted Gp-<VP,EP>, where
the nodes or vertices VP correspond to the set
of nodul:s and each edge (x,y)€ Ep denotes that

acdules x,yq;Vb communicate with each other.

Let the graph of the array processor be
denotedvGa-<v;,£‘>, where V. is the set

of processors and the edges Ea represent the

interconnection pattern of the processors.

The problem graph Gp may be considered to
be a set of vertices Vb and a function
Gszb X vp-—>{o,1), such that
Gp(x,y)-Gp(y,x) and Gp(x,x)-e for all
X,Y€ Vp. Gp(x,y)-l is taken to mean that

there is an edge between x and y, {i.e.
(x,y)iEp.»

the pair



The graph of the array, Ga’ may similarly
be considered a set of vertices Va and a

function Ga:Va X Va->(0,l}.

We assume that (vp|-|vai. 1f
|Vp|<|va|, a suitable number of dummy

vertices may be inserted into the problem. We do

not consider the case IVp[>|Val.

A mapping of problem modules onto processors

1-1

f eV e
is denoted by the function o Vp e

>V .
a
The quality of a mapping is determined by
the number of problem edges that fall on array
edges. We call this number the cardinalitv of
the mapping, denoted Ifml.

The cardinality of a mapping fm is

legl= 2 z G, (XY)*6, (£,(x), £, ().

xeV

y&
This formulaparises as follows.
Gp(x,y)-l if x and y in the problem

£ (x)

[fm(y)] represents the processor onto which

graph are connected by an edge.

problem module x [y] is mapped. The expression
Ga(fm(x),fm(y))-l only if the processors

onto which x and y are mapped are connected.

Thus the expression inside the summation sign is
1 only if an edge connecting two modules falls on
an edge connecting two processors. In summing
over all xin and erP each processor edge

is counted twice, hence the multiplying factor.

To find the best mapping, we must choose a
function fm that has maximum cardinality from

among the (IVPI)! possible functioms.

111. Problem Equivalences

In this section we show that the mapping
problem, in its most general form (i.e. given
arbitrary Ga and Gp), is computationally

equivalent to the graph isomorphism problem.
point out the strong similarities between the
mapping problem and the bandwidth reduction and
quadratic assignment problems.

We

Graph Isomorphism

Two graphs G1 and G2 are said to be

isomorphic to each other if there is a one-to-one
correspondence bdetween their vertices and between
their edges such that the incidence relationships
are preserved {l}. This may be stated more
formally as follows: two graphs

G,:V. X Vz—->{0,l} and

1"71
X VZ—->{0,1} with IVII-IVZI are

vaz
isoworphic if taere exists a function

e:V ——d=l >y such that
1 onto 2

GI(X,}')=C2Y.e(x),e(y)) for all x,y€V, [2].

The problen of determining whether two
graphs are isomorphic 1is ome of the classical
unsolved combinatorial problems. Exact efficient
(i.e. polynomiil time) algorithms for solving
this probtem fo: arbitrary graphs are not known
although numerous researchers have attacked this
prcblem [2). Some researchers have reported
success with heuristic algorithms applied to
various restricted classes of graphs(see, for
example {4]). It appears unlikely that an
7olynomial time solution to the general problem
will ever be found.

We necw shov that if we had an exact
algorithm for sclving the general mapping
problen, we wou.d alsc be able to solve the graph
icorccpaism protilem.

If two grarhs are isomorphic, they must have
the same nrmber of edges and thus a function
zapping Gi onto 62 and having cardinality

egudal to the total number of edges must exist.
If we had an exict algorithm for solving the
2apping prchlem, we could use it to map G1 onto

G; and, 1f the two were isomorphic, obtain a

mavrping of cardinality equal to the number of
edges. Thus we could answer "yes" or "no" to the

question "Are G, and G, isomorphic?"” in

polynomial time, for arbitrary Gl and GZ’ 1f

we could solve the mapping problem in polynomial

time for arbitrary G1 and G2' The mapping

problem is therefore computationally equivalent
to the graph isomorphism problem and we do not
hold much hope for finding an exact polynomial
time algorithm for its solutioa.




Bandwidth Reduction

The bandwidth reduction problem requires the
permutation of the rows and columns of a sparse
square matrix so as to cluster the non-zero
entries as closely as possible about the main
diagonal [5]. The mapping problem, as will
become clear in the following sections, entails
permuting the rows and columns of the adjacency
matrix of a problem graph so that it resembles as
closely as possible the adjacency matrix of the
graph of the array of processors. Arrays of
processors that have a regular intercounection
pattern (as does the FEM), usually have an
adjacency matrix composed mostly of several
well-defined bands. The mapping problem for such
arrays entails permuting the input matrix so that
as many entries as possible fall on the bands.
The similarity with bandwidth reduction 1is
obvious.

The bandwidth reduction problem is known to
be NP-complete [6].
this problem have been developed [5],[7].

The Quadratic Assigmment problem

In this problem we are given (1) a set of n
objects alongwith a cost matrix in which each
entry ciJ is a measure of the affinity between

objects i and j, and (2) a set of n locations
with a distance matrix in which entry ds:

stands for the distance between locations s and
t. A function p that maps objects onto locations
is called an agsigmment. The problem of finding
the assigoment that minimizes

1Zj cijdp(i)pu) is called the

quadratic assignment problem({8]. This problem
is exemplified by the task of locating

electrical assemblies in given slots so as to
minimize the total length of interconnecting
wires. No efficient algorithm for the solution
of this problem is knowm.

I1f the affinity and distance matrices be
symmetric and have 0,1 entries, the quadratric
assignment problem reduces to the mapping
problem.

IV. The Finite Element Machine

The Finite Element Machine (FEM), presently
under development at NASA Langley Research
Center, 13 an array of microcomputers
interconnected in an "eight-nearest neighbor"
interconnection pattern (Fig. 1) {9],{10]. 1In
addition to the nearest neighbor links, which are
dedicated to communication between specific pairs
of processors, there is a time shared global bus
(not shown in Fig. 1) which i{s used for
communication between pairs of nodes that are not
adjacent.

Many heuristic algorithms for

The machine is to be used to solve
structural analysis problems as follows. The
structure is first reduced to a combinatorial
graph. The edges of the graph correspond to
structural members and the nodes to meeting
points of the members (Fig. 2). Each node 1is
assigned to a processor of the FEM and
computation proceeds in parallel, as described by
Jordan [9]. During the course of the
computation, there is communication between pairs
of processors only if the structural nodes mapped
on them are connected in the physical problem.
Thus, should an edge of the physical problem fall
on an edge of the FEM, communication proceeds
with greatest efficiency via the dedicated
nearest neighbor connection. Should this not be
the case, interprocesscr communication must
employ the time-shared global bus with consequent
degradation in pe:formsance.

Mapping Structures ontc the FEM

Fig. 3 shows the adjacency matrix of a 6 X 6
FEM. One possible way of mapping the problem
structure of Fig. 2 onto the FEM would be to map
node 1 of the structure onto node i of the FEM.
This mapping is Jnudicated in the adjacency matrix
of the structure {Fig. 4) by the use of “*s
where an 2dge of the structure falls on an edge
of the FRI, and "0‘s otherwise. The cardimality
of this mapping is 32, while the total number of
edges is 20.

Ve can atteunt to increase the cardimality
of the mapping by renumbering the nodes of the
problem or, equivalently, permuting rows and
columns of the adjacency matrix of the problem.
The bottom part of Fig. 4 shows an improved
mapping, with cardinality 74, obtained by
applying the mapping algorithm that will be
described in the following section . The
permuted row ard columr labels indicate the
renurberiag that asust te done to the nodes of the

problem ia order to obtain this improved mapping.

V. MAPPER: A Pairwise Interchange Algorithm

We have developed a heuristic algorithm that
accepts as input the adjacency matrix of a
problem graph and outputs a permutation of this
matrix that matches more closely the adjacency
matrix of the FEM.

The algorithm proceeds by sequences of
pairwise interchanges, 2lternating with
probabilistic jumps. It starts by accepting the
problem matrix and the size of the square FEM
onto which it 1s to be wapped. It then generates
the adjacency matrix of the FEM and uses this for
comparison while improving the mapping.

Most of the following listing is self
explanatory. The function CARDINALITY (MAT)
returns the cardinality of the mapping defined by
the matrix MAT.



program MAPPER;
var MAT, BEST: adjacency matrix;
DONE, FLAG: boolean;
begin
input adjacency matrix of problem, MAT;
{MAT 1s taken to be the initial mapping}
input the size of the FEM, n;
{the FEM 18 an n X n array}
generate adjacency matrix for n X n FEM;
BEST:~MAT; {the best mapping found so far}
DONE:=false;
while not DONE do
begin{MAIN}

repeat{ SEARCE}
FLAG:=false;
for each node do

begin{ AUGMENT}

1: examine the pairwise
exchange of this node
with all other nodes;

2: select the one which leads
to the largest gain in the
cardinality of the mapping;

3: if largest gain>=0 then
nake the exchange;

4: if largest gain>0 then
FLAG: =true;

end ; {AUGMENT)

until FLAG=false; {end SEARCH}

if CARDINALITY(MAT)<CARDINALITY(BEST)
then DONE:=TRUE
else
begin{ JUMP}
BEST:=MAT;
randouly interchange
n pairs of nodes of MAT;
end; { JUMP}

end; {MAIN}
ocutput BEST;
end.

The block SEARCH of this algorithm attempts
to improve the mapping by considering all
possible pairwise exchanges of node numberings.
The exchange that leads to the maximum increase
in cardinality of the mapping is made and the
process AUGMENT repeated until no further gains
are possible. At this point we leave SEARCH and
if the mapping found during this pass through
SEARCH is better than the best mapping found so
far, a probabilistic jump is applied to the
mapping and the algorithm returns to block
SEARCH.

Pairwise interchanges are not guaranteed to
lead to the best mapping and sometimes lead to
mappings that are "dead ends" in that they are
not very close to optimal and no pairwise
exchange can improve them. The algorithm
attempts to leave such dead ends by
probabilistically "jumping” to nearby mappings
that may permit improvement via pairwise
interchanges.

The following is a detailed discussion of
various aspects of the algorithm.

1. When carrying out pairwise exchanges, we
choose for each node the exchange that leads to
the largest gain in cardinality rather than the
first gainful exchange encountered. We have
found that this strategy leads to mappings that
are consistently better than those obtained using
the second criterion.

2. We make an exchange even if the largest gain
encountered is zero. This has little effect at
the outset, when interchanges with nonzero gains
are easily found. Towards the end of the
algorithm, this criterioc helps slide past "dead
ends” to mappings which, although they have the
same cardinality, may permit further improvement.

3. I1f the number of nodes on the FEM is N=n X n,
then the execution of block AU(MENT will take

O(Nz) time.

4. The algorithm will exit blcck SEARCH if no
pairwise exchange leads tc an improvement. If
the cardinality of the mapping found during this
pass through SEARCH is petter than the one found
during the last pass, the algorithm executes
JUMP. Here it tries to break out of the "dead
end" from which no pairwise exchange leads to an
improvement by probabilisrically jumping to a
nearby mapping, which, although it will almost
certainly have poorer cardinality, may lead to a
better mapping upon further application of block
SEARCH. A copv of the ol4 mapping is saved ia
BEST, in case the aew mapping is poorer.

5. The probabilistic jump described above needs
to be far enough from the curreat mapping to
offer the prospect of i‘mprovemeat, but not so far
as to undo all the gains rade up to this point.
We have found that an interchange of n randomly
selected psirs of nodes gives tie best results.

6. If the mapping found after attempting to
augment from a probabilistically disturbed
mapping 1is poorer, the algorithn terminates. We
have fouand that further probabilistic jumps very
rarely lead to improvements.

7. For an N node FEM, the cardilnality of a
wapping cannot exceed 4N. Each pass through loop
MAIN must lead to a gain of at least 1. The time
required to execute this loop 1s dominated by

AUGMENT, which takes O(Nz) time. The algorithm
thus takes 0(N3) time in all.

Vl. Performance of the Algorithm

The algorithm has been implemented and
tested on about 20 structural problems of 9 to 49
nodes for FEMS of sizes 4 X 4 to 7 X 7. The
results are tabulated in Table 1. Some of these
cases are illustrated in Figs. 5-7. In most
cases the algorithm is able to improve the
mapping dramatically.




It 18 difficult to say just how close to
optimal the mappings obtained by the algorithm
are, since we have no way of knowing what the
best mapping for a specific probem is. In cases
where the cardinality of the final mapping is
close to the total number of edges, we can be
sure that it is very close to optimal. For
example, the mapping of Fig. 2 wvas improved from
32 to 74 as showa in Fig. 4. The final
mapping is very close to the total aumber of
edges (B80) and must therefore be very near
optimal. (For this specific example, it is
possible to prove that the optimal mapping is of
cardinality 78 [l1]). In genmeral, we have found
that graphs whose input mappings have
cardinalities of around 50 percent of the total
number of edges or less can usually be improved
dramatically.

To get a better idea of the performance of
the algorithm, we mapped random permutations of
the FEM onto itself. Since the FEM can be mapped
perfectly onto itself, the success of the
algorithm in doing so gives us some idea of how
well it performs on general problems, for which
it is impossible to specify the cardinality of
the best mapping. The results of this
experiment, in which ve fed the algorithm 100
random permutations of 5 X 5 and 6 X 6 FEMS are
listed in Fig. 8. Histograms for the initial
cardinality, cardinality at the end of the first
application of SEARCH and the cardinality at the
termination of the algorithm are given (the
difference between the latter two illustrates the
impact of jumping). The algorithm is seen to
perform very well in these experiments,
suggesting that the results obtained when the
algorithm is run on natural structural problems
are also of similar quality.

The run times of the implemented algorithm

on a CDC Cyber 175 vary from about 1/3 sec. for
4 X 4 problems to 30 sec. for 7 X 7 problems.

VII. Conclusions

The observed run times of our algorithm are
quite acceptable for the current prototype 6 X 6
FEM. However, as the growth rate of time is

bounded from below by Nz, the algorithm will
probably not be suitable for very large arrays
(say 32 X 32). PFor such arrays, entirely
different heuristics will need to be developed.
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Fig. 1 A 6 X 6 Finite Element Machine (FEM) Fig. 2 A 33 node structurzal prohlem
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TABLE I

PROBLEM FEM  TIME NUMBER OF EXECUTIONS OF  CARDINALITY  EDGES
| NAME NODES | SIZE | Ms. | AUGMENT  JUMP INITIAL  FINAL
STRUCTURE WITH FREE NODES 33 6X6 11714 14 2 32 74 80
TRUSS 8 &X& 419 5 1 9 15 15

5X5 1472 5 1 6 15

6X6 5083 6 1 6 15

7x7 16814 8 1 6 15
SHIP RADAR TOWER 25 5X5 2912 10 2 44 53 65
SCHWEDLER DOME 6 &4 32 4 1 6 10 10

+WING BOX 30 '6X6 3380 4 1 66 66 78

*NTF-~-DOWNSTREAM NACELLE 35 6X6 4165 5 1 48 51 58
NTF-NACELLE GUSSET PLATE 39 X7 2219 14 3 28 49 52
NTF-DOWNSTREAM NACELLE 28 6X6 4224 5 1 37 46 51
NTF-NACELLE BULKHEAD 30 7 6X6 12650 15 3 27 48 49
NTF-CRADLE 33 6X6 6623 8 1 22 48 52

+The algorithm was unable to improve the given mapping.
*National Transonic Facility.
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